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Abstract
We study the time evolution of a three-dimensional quantum particle, initially
in a bound state, under the action of a time-periodic zero range interaction with
‘strength’ α(t). Under very weak generic conditions on the Fourier coefficients
of α(t), we prove complete ionization as t → ∞. We prove also that, under
the same conditions, all the states of the system are scattering states.

PACS numbers: 03.65.Ge, 02.30.Tb

1. Introduction

In this paper we shall study the asymptotically complete ionization of a system given by a
quantum particle interacting with a time-dependent singular potential in three dimensions.
The Hamiltonian of the system is formally

H(t) = H0 + HI(t)

where H0 is a zero range perturbation at the origin of the Laplacian, i.e.

D(H0) = {
� ∈ L2(R3) | �(x) = �(x) + γ −1�(0)G0(x),� ∈ H 2

loc(R
3),�� ∈ L2(R3)

}
H0� = −�� (1.1)

where G0(x) is the Green function of the Laplacian,

G0(x − x′) = 1

4π |x − x′|
and HI(t) is heuristically given by α(t)δ(x − r) where r ∈ R

3\{0} and α(t) is a periodic
function with period T .

These kind of models have been widely studied (see e.g. [2–8]) as toy models of
more complicated physical problems, such as strong laser ionization of Rydberg atoms
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or dissociation of molecules. Indeed, time-dependent point interactions are an interesting
example of time-dependent perturbations that are not small in any sense with respect to the
unperturbed Hamiltonian, so that time-dependent perturbation theory cannot be applied. On
the other hand, since such models are solvable, namely all the spectral and scattering data can
be explicitly calculated, the problem of asymptotically complete ionization can be studied in
a non-perturbative way. Indeed one can explicitly prove that, starting at time t = 0 from a
bound state ϕ of the system, the survival probability

|θ(t)|2 = |(ϕ,U(t, 0)ϕ)|2
has a power law decay to zero as t → ∞ (see [3, 4] and references therein).

Essentially using Laplace transform techniques (for a review of the methods used, we shall
refer to [3]), we shall prove that the system shows asymptotically complete ionization under
suitable generic conditions on the Fourier coefficients of α(t) and that the survival probability
has a power law decay for large time.

We stress the non-perturbative nature of the result. Indeed the complete ionization does
not depend on the size of α(t) and it holds even if α(t) is very big (so that the time-dependent
perturbation is small—in the sense of quadratic forms—with respect to the unperturbed
Hamiltonian) or very small (so that the perturbation is large) or fast oscillating. Moreover
the asymptotic behaviour is independent of the period T . In particular there is asymptotically
complete ionization, even if the period is very large, as for time-adiabatic perturbations.

In section 2 we shall introduce the model, the equations for the coefficients q(j)(t) and their
Laplace transforms, which will be the main objects under investigation. Applying the analytic
Fredholm theorem to such equations, in sections 3, 4 and 5 we shall identify the singularities
of their solutions on the closed right half plane; in section 6 we shall derive the main
results about ionization.

2. The model

The model we are going to study describes a quantum particle subjected to a time-dependent
zero range interaction. In the absence of the time-periodic perturbation, the Hamiltonian
describes a zero range interaction placed at the origin. The strength of the interaction, i.e.
the parameter γ in (1.1), is assumed to be −1/4π , in order to simplify the calculations, but
the results do not depend on this choice. This system has a bound state of energy −1 and
normalized eigenfunction

�0(x) = e−|x|
√

4π |x| . (2.1)

The remaining part of the spectrum is absolutely continuous and coincides with R
+.

The time-dependent perturbation is a zero range interaction placed at a point r �= 0 and
with time-periodic strength α(t) with period T .

The entire system is then described (see [1]) by the time-dependent self-adjoint
Hamiltonian H(t), with domain

D(H(t)) = {
�t(x) = �(x; t) + q(1)(t)G0(x) + q(2)(t)G0(x − r),

� ∈ H 2
loc(R

3),�� ∈ L2(R3)
}

(2.2)

�(0; t) + q(2)(t)G0(r) = −q(1)(t)

4π
�(r; t) + q(1)(t)G0(r) = α(t)q(2)(t). (2.3)

Moreover for any �t(x) ∈ D(H(t)) one has

H(t)�t(x) = −��(x; t). (2.4)
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We want to stress that definitions (2.2) and (2.3) imply that the functions in D(H(t)) have the
following behaviour near the centres of the interactions

lim
x→0

{4π |x|�t(x)} = q(1)(t) lim
x→r

{4π |x − r|�t(x)} = q(2)(t).

It is well known (see [9–11, 13, 14]) that the solution of the time-dependent Schrödinger
equation

i
∂�t

∂t
= H(t)�t (2.5)

associated with operator (2.4) is given by

�t(x) = U0(t − s)�s(x) + i
∫ t

s

dτ [q(1)(τ )U0(t − τ ;x) + q(2)(τ )U0(t − τ ;x − r)] (2.6)

where U0(t) = exp(i�t), U0(t;x) is the kernel associated with the free propagator and the
functions q(j)(t) satisfy a system of Volterra integral equations for t � s,

q(1)(t) +

√−2i

π

∫ t

s

dτq(2)(τ )

∫ t

τ

dσ
U0(σ − τ ; r)√

t − σ

− 1√−π i

∫ t

s

dτ
q(1)(τ )√

t − τ
= 4

√
π i

∫ t

s

dτ
(U0(τ )�s)(0)√

t − τ
(2.7)

q(2)(t) +

√−2i

π

∫ t

s

dτq(1)(τ )

∫ t

τ

dσ
U0(σ − τ ; r)√

t − σ

+ 4
√

π i
∫ t

s

dτ
α(τ)q(2)(τ )√

t − τ
= 4

√
π i

∫ t

s

dτ
(U0(τ )�s)(r)√

t − τ
. (2.8)

We are interested in studying asymptotic complete ionization of system defined by (2.4) and
(2.5), starting by the normalized bound state (2.1) at time t = 0. Moreover we shall require
that α(t) be a real continuous periodic function with period T , so that it can be decomposed in
a Fourier series, for each t ∈ R

+, and the series converges uniformly on every compact subset
of the real line. More precisely, in terms of Fourier coefficients of α(t), we assume

(1) α(t) =
∑
n∈Z

αn e−inωt , {αn} ∈ �1(Z)

(2.9)
(2) αn = α∗

−n.

We now introduce a generic condition on α(t) that will be used later on. Let T be the right
shift operator on �2(N), i.e.

(T α)n ≡ αn+1 (2.10)

we say that α = {αn} ∈ �2(Z) is generic with respect to T , if α̃ ≡ {αn}n>0 ∈ �2(N) satisfies
the following condition:

e1 = (1, 0, 0, . . .) ∈
∞∨

n=0

T nα̃. (2.11)

For a detailed discussion of genericity condition see [4]. Note that

α0 ≡ 1

T

∫ T

0
α(t) dt (2.12)

does not enter in the condition.
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By simple estimates on the sup norm of rj (t) ≡ q(j)(t) e−bt , it is easy to prove that q(j)(t)

has at most an exponential behaviour as t → ∞, i.e. asymptotically |q(j)(t)| � Aj ebj t .
Therefore the Laplace transform of q(j)(t), denoted by

q̃(j)(p) ≡
∫ ∞

0
dt e−ptq(j)(t)

exists and is analytic at least for Re(p) > b0. Hence, applying the Laplace transform to
equations (2.7) and (2.8), one has

q̃(1)(p) = − 1

(2π)
3
2 r

e−r
√−ip

1 − √−ip
q̃(2)(p) + F1(p) (2.13)

q̃(2)(p) = − 4π√−ip

∑
k∈Z

αkq̃
(2)(p + iωk) +

e−√−ipr

2πr
√−2π ip

q̃(1)(p) + F2(p) (2.14)

where the explicit expression of Fi(p) for the initial datum (2.1) is given by

F1(p) ≡ −2i
√

2π

1 + ip

F2(p) ≡ −2i
√

2π√−ip

e−√−ipr − e−r

r(1 + ip)
.

Let us start by considering the system of equations (2.13) and (2.14), for the specific initial
datum (2.1): analyticity at least for Re(p) > b0 suggests to choose the branch cut of the square
root along the negative real line: if p = � eiϑ ,√

p = √
� eiϑ/2 (2.15)

with −π < ϑ � π .
Before dealing with the behaviour of the solution, let us simplify the problem: setting

q
(j)
n (p) ≡ q̃(j)(p + iωn) we obtain a sequence of functions on the strip I = {p ∈ C, 0 �

Im(p) < ω} and setting qj (p) ≡ {
q

(j)
n (p)

}
n∈Z

, equations (2.13) and (2.14) can be rewritten
as

q1(p) = M1q2(p) + G1(p) (2.16)

q2(p) = Lq2(p) + M2q1(p) + G2(p) (2.17)

where

(M1q)n(p) ≡ − 1

(2π)
3
2 r

e−r
√

ωn−ip

1 − √
ωn − ip

qn(p) (2.18)

(M2q)n(p) ≡ 1

(2π)
3
2 r

e−r
√

ωn−ip

4πα0 +
√

ωn − ip
qn(p) (2.19)

(Lq)n(p) ≡ − 4π

4πα0 +
√

ωn − ip

∑
k∈Z

k �=0

αkqn+k(p) (2.20)

and Gj(p) = {
g

(j)
n (p)

}
n∈Z

with

g(1)
n (p) ≡ 2i

√
2π

1 − ωn + ip
(2.21)

g(2)
n (p) ≡ −2i

√
2π

r

e−r
√

ωn−ip − e−r

(4πα0 +
√

ωn − ip)(1 − ωn + ip)
. (2.22)
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3. Analyticity on the (open) right half plane

Let us extend equations (2.16) and (2.17) on the whole open right half plane: we are going to
prove that the solution exists and is analytic for Re(p) > 0. Let us start with some preliminary
results:

Proposition 3.1. For p ∈ I, Re(p) > 0,Mj (p) are analytic operator-valued functions and
Mj (p) are compact operators on �2(Z).

Proof. Let us consider only M1, since the argument also applies to M2. The analyticity of
the operator is a straightforward consequence of the explicit expression (2.18). Moreover the
operator M1(p) is a multiplication operator in �2(Z) and it is bounded and compact since{

1

(2π)
3
2 r

e−r
√

ωn−ip

1 − √
ωn − ip

}
∈ �2(Z)

on the open right half plane: indeed choice (2.15) for the branch cut of the square root implies
Re(

√
ωn − ip) > 0, if Re(p) > 0. �

Proposition 3.2. For p ∈ I, Re(p) > 0,L(p) is an analytic operator-valued function and
L(p) is a compact operator on �2(Z).

Proof. Analyticity for Re(p) > 0 easily follows from the explicit expression of the operator.
Moreover L(p) can be written as

L(p) = A(p)
∑
k∈Z

k �=0

αkT n+k

where A(p) is the operator

(Aq)n(p) ≡ An(p)qn(p) = − 4πqn(p)

4πα0 +
√

ωn − ip

and T is the right shift operator on �2(Z). Since ‖T ‖ = 1, the series converges strongly to a
bounded operator. Moreover A(p) is a compact operator for Re(p) > 0: A(p) is the norm
limit of a sequence of finite rank operators, because limn→∞ An(p) = 0. Hence the result
follows e.g. from theorems VI.12 and VI.13 of [12]. �

Lemma 3.1. For each r, ω ∈ R
+ and for Re(p) > 0

Im

[
√

ωn − ip +
1

(2π)3r2

e−2r
√

ωn−ip

1 − √
ωn − ip

]
< 0

∀n ∈ Z.

Proof. First of all we want to stress that choice (2.15) for the branch cut implies that
Re(

√
ωn − ip) > 0 and Im(

√
ωn − ip) < 0, if Re(p) > 0. Calling x ≡ Re(

√
ωn − ip), y ≡

Im(
√

ωn − ip) and

fr(x, y) ≡ Im

[
x + iy +

1

(2π)3r2

e−2r(x+iy)

1 − x − iy

]
one has ∣∣∣∣ 1

(2π)3r2

e−2r(x+iy)

1 − x − iy

∣∣∣∣ <
1

(2π)3r2|y|
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and then fr(x, y) � 0, if |y| � [(2π)3/2r]−1. Moreover

fr(x, y) = (2π)3r2[(1 − x)2 + y2]y + e−2rx[y cos(2ry) − (1 − x) sin(2ry)]

(2π)3r2[(1 − x)2 + y2]

and the claim is true if x � 1, since sin(2ry) < 0 and cos(2ry) > 0, for y > −[(2π)3/2r]−1.
Hence it is sufficient to prove that fr(x, y) < 0 on the set

R = {(x, y) ∈ R
2 | x < 1,−[(2π)3/2r]−1 < y < 0}.

Now set

gr(x, y) ≡ (2π)3r2[(1 − x)2 + y2]fr(x, y)

y

and consider
∂gr

∂y
= 2(2π)3r2y − 2 e−2rx

[
r sin(2ry) +

r(1 − x) cos(2ry)

y
− (1 − x) sin(2ry)

2y2

]
.

Since, for (x, y) ∈ R, 2 e−2rxr sin(2r|y|) < 2(2π)3r2|y| and 2ry cos(2ry) � sin(2ry) the
partial derivative of gr with respect to y is always negative in R. Thus

gr(x, y) � gr(x, 0) > 0.

In conclusion gr(x, y) > 0 and then fr(x, y) < 0,∀(x, y) ∈ R. �

Proposition 3.3. The solutions q̃(j)(p), j = 1, 2, of (2.13) and (2.14) are unique and analytic
for Re(p) > 0.

Proof. Since G1(p) ∈ �2(Z) is analytic on the right half plane and thanks to proposition 3.1,
we can substitute (2.16) in (2.17) and consider only the second equation. Thus (2.17) now
reads as

q2(p) = [L + M2M1]q2(p) + M2G1(p) + G2(p). (3.1)

Then the key point will be the application of the analytic Fredholm theorem (theorem VI.14
of [12]) to the operator L′(p) ≡ L + M2M1, in order to prove that (I − L′(p))−1 exists for
Re(p) > 0.

So let us begin with the analysis of the homogeneous equation associated with (3.1),

q(p) = L′(p)q(p)

and suppose that there exists a nonzero solution Q(p) = {Qn(p)}n∈Z. Multiplying both sides
of the equation by Q∗

n and summing over n ∈ Z, we have

∑
n∈Z

[
√

ωn − ip +
1

(2π)3r2

e−2r
√

ωn−ip

1 − √
ωn − ip

]
|Qn|2 = −4π

∑
n,k∈Z

Q∗
nαk−nQk

but, since the right-hand side is real, because of condition 2 in (2.9), it follows that

Im

[∑
n∈Z

(
√

ωn − ip +
1

(2π)3r2

e−2r
√

ωn−ip

1 − √
ωn − ip

)
|Qn|2

]
= 0

and then, by lemma 3.1, Qn = 0,∀n ∈ Z.
Since there is no nonzero solution of the homogeneous equation associated with (3.1)

and L is compact on the whole open right half plane, analytic Fredholm theorem applies
and the result then easily follows, because M2G1(p) + G2(p) ∈ �2(Z) and, for each
n ∈ Z, [M2G1(p) + G2(p)]n is analytic for Re(p) > 0. �
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4. Behaviour on the imaginary axis at p =/ 0

The equation for q2(p) can be written as

(4πα0 + cn(p))q(2)
n (p) = −4π

∑
k∈Z

k �=0

αkq
(2)
n+k(p) + f (2)

n (p) (4.1)

where

cn(p) ≡ √
ωn − ip +

e−2r
√

ωn−ip

(2π)3r2(1 − √
ωn − ip)

(4.2)

f (2)
n (p) ≡ − 2i

√
2π

r(1 − ωn + ip)

[
(2π)

3
2 − 1

(2π)
3
2

e−r
√

ωn−ip − e−r

]
(4.3)

and it is clear that the solution may have a pole where

4πα0 +
√

ωn − ip +
e−2r

√
ωn−ip

(2π)3r2(1 − √
ωn − ip)

= 0

and that the coefficients of the equation for q
(2)
0 fail to be analytic at p = i: for p ∈ I,

Re(p) = 0, and n ∈ Z, the unique solution of 1 − √
ωn − ip = 0 is p = i, n = 0.

In the following we shall see that in fact the solution is analytic on the imaginary axis
except at most some singularity at p = 0. Let us start by considering the position of the
eventual pole.

Lemma 4.1. Assume that α0 in (2.12) is non-negative. Then there exists a unique n0 ∈ N and
a unique p0 ∈ I, Re(p) = 0, such that

4πα0 +
√

ωn0 − ip0 +
e−2r

√
ωn0−ip0

(2π)3r2(1 − √
ωn0 − ip0)

= 0.

Moreover ∀n ∈ Z, n < 0 and ∀p ∈ I, Re(p) = 0,

Im

[
4πα0 +

√
ωn − ip +

e−2r
√

ωn−ip

(2π)3r2(1 − √
ωn − ip)

]
> 0.

Proof. Let us first consider the second statement: on the strip I and for n < 0,
√

ωn − ip ≡ iλ,
with λ ∈ R, λ > 0. Hence

Im(cn(iλ)) = (2π)3r2(1 + λ2)λ + λ cos(2rλ) − sin(2rλ)

(2π)3r2(1 + λ2)

and following the proof of lemma 3.1, it can be easily proved that the expression above is
positive ∀λ ∈ R

+. On the other hand, if n � 0 and p ∈ I, Re(p) = 0,
√

ωn − ip = λ, with
λ > 0, and, ∀r, ω ∈ R

+, the equation

(2π)3r2(4πα0 + λ)(λ − 1) = e−2rλ

has a unique solution for λ ∈ R
+. Then, since there exists a unique p0 ∈ I, Re(p0) = 0, such

that, for fixed λ ∈ R
+, the equation p0 = i(λ2 − ωn0) is satisfied for some n0 ∈ N, the proof

is complete. �

Lemma 4.2. Assume that α0 in (2.12) is non-negative and that {αn} satisfies (2.9) and the
genericity condition with respect to T (2.11). Then the solutions of (2.13) and (2.14) are
unique and analytic on the imaginary axis for p �= 0, i, p0.
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Proof. Since for p ∈ I, Re(p) = 0 and p �= 0, i, p0, the coefficients of equations (2.16)
and (2.17) are analytic (see lemma 4.1) and belong to �2(Z) and since the operators L,M1

and M2 are still compact on the same region, it is sufficient to show that the homogeneous
equation associated with (4.1) has no non-zero solution, in order to apply the analytic Fredholm
theorem.

If Qn is such a non-zero solution, following the proof of proposition 3.3, we immediately
obtain the condition:

∑
n∈Z

[
√

ωn − ip +
1

(2π)3r2

e−2r
√

ωn−ip

1 − √
ωn − ip

]
|Qn|2 ∈ R

and then lemma 4.1 guarantees that Qn = 0,∀n < 0. Now let n1 ∈ N be such that Qn1 �= 0.
For n < n1, one has

∑∞
k=n1

αk−nQk = 0 or, setting k = n1 − 1 + k′, for n � 0,

∞∑
k′=1

αk′+nQn1−1+k′ = 0

and then, for each n � 0,

(Q′, T nα)�2(N) = 0

where Q′
n = Q∗

n1−1+n and (·, ·) stands for the standard scalar product on �2(N). Finally the
genericity condition (2.11) implies that Q′

1 = Q∗
n1

= 0, which is a contradiction. Hence
Qn = 0,∀n ∈ Z. �

Proposition 4.1. Assume that α0 in (2.12) is non-negative and that {αn} satisfies (2.9) and
the genericity condition with respect to T (2.11). Then the solutions of (2.13) and (2.14) are
unique and analytic on the imaginary axis except at most at p = 0.

Proof. In the first part of the proof we are going to consider only equation (4.1) for q2(p) and
we shall extend then the results to q1(p).

In order to prove analyticity of the solution we need to analyse the behaviour of the
solution of (4.1) in a neighbourhood of p = p0 (see lemma 4.1) and p = i separately and
show that it has no singularity, while, for p ∈ I, Re(p) = 0, and p �= i, p0, the result follows
from lemma 4.2.

Let us look for a solution of (4.1) of the form (for simplicity we are going to omit the
index 2)

qn = un + vnqn0

for n �= n0: qn satisfies (4.1) if and only if {un}, {vn} ∈ �2(Z\{n0}) are solutions of

cn(p)un = −4π
∑
k∈Z

k �=n0

αk−nuk + f (2)
n (p) (4.4)

cn(p)vn = −4π
∑
k∈Z

k �=n0

αk−nvk − 4παn0−n. (4.5)

Existence of non-zero solutions of the homogeneous equations associated with (4.4) and (4.5)
can be excluded because of the genericity condition as in the proof of lemma 4.2 and then,
since the coefficients of the equations above are analytic in a neighbourhood of p0 and belong
to �2(Z\{n0}), {un}, {vn} ∈ �2(Z\{n0}) are analytic in the same neighbourhood.
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Moreover qn0 satisfies the equation
4πα0 + cn0(p) + 4π

∑
k∈Z

k �=n0

αk−n0vk


 qn0 = −4π

∑
k∈Z

k �=n0

αk−n0uk + f (2)
n0

(p).

It is then sufficient to show that∑
k∈Z

k �=n0

αk−n0vk(p0) �= 0.

Let us suppose that the contrary is true: calling Vn ≡ vn(p0), multiplying equation (4.5) at
p = p0 by V ∗

n and summing over n ∈ Z, n �= n0, one has

∑
n∈Z

n�=n0

{
√

ωn − ip0 +
e−2r

√
ωn−ip0

(2π)3r2(1 − √
ωn − ip0)

}
|Vn|2 = −4π

∑
n,k∈Z

n,k �=n0

V ∗
n αk−nVk.

Using condition (2.9) and the genericity condition (2.11), as in the proof of lemma 4.2, one
obtains Vn = 0,∀n ∈ Z\{n0}, but this is impossible since Vn satisfies equation (4.5). This
concludes the proof of analyticity of q2(p) in a neighbourhood of p = p0. In the same way it
is possible to conclude that q2(p) is also analytic at p = i.

It remains to study the behaviour of q1(p) and in particular to analyse q
(1)
0 (p) in a

neighbourhood of p = i, where it may have a pole (see equation (2.16)): from (4.1) one has

e−2r
√

ωn+1

(2π)3r2
q(2)

n (i) = −2i
√

2π

r

[
(2π)

3
2 − 1

(2π)
3
2

e−r
√

ωn+1 − e−r

]

and then q
(1)
0 (i) = i

√
2π . �

Remark. Proposition 4.1 holds even if α0 < 0. The proof can be given in the same way but it
is slightly more complicated, because 4πα0 + cn(p) in lemma 4.1 could vanish in two points
instead of one. Nevertheless the argument contained in proposition 4.1 can be applied once
more, in order to exclude the presence of the corresponding singularity of the solution.

5. Behaviour at p = 0

We shall now study the behaviour of the solutions of (2.16) and (2.17) in a neighbourhood the
origin. With choice (2.15) for the branch cut of the square root, it is clear that we must expect
branch points of q̃(j)(p), solutions of (2.13) and (2.14), at p = iωn, n ∈ Z, which should
imply a branch point at p = 0 for each q

(j)
n .

We are going to show that the solutions of (2.16) and (2.17) have a branch point singularity
at the origin.

Proposition 5.1. If {αn} satisfies (2.9) and (2.11) (genericity condition), the solution of the
system (2.13), (2.14) has the form q̃(j)(p) = cj (p) + dj (p)

√
p, j = 1, 2, in an imaginary

neighbourhood of p = 0, where the functions cj (p) and dj (p) are analytic at p = 0.
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Proof. The resonant case, namely if, for some N ∈ N, ω = 1/N , and the non-resonant one
will be treated separately.

(1) Non-resonant case. Setting qn = un + vnq0, n �= 0 in (4.1), one obtains the following
equations for {un}, {vn} ∈ �2(Z\{0}):

cn(p)un = −4π
∑
k∈Z

k �=0

αk−nuk + g(2)
n (p) (5.1)

cn(p)vn = −4π
∑
k∈Z

k �=0

αk−nvk − 4πα−n. (5.2)

If, for every n ∈ Z, cn(0) �= −4πα0, using the genericity condition, it is easy to prove that
{un}, {vn} ∈ �2(Z\{0}) are unique and analytic at p = 0. On the other hand if the condition
above is not satisfied and there exists N1 ∈ Z such that

4πα0 +
√

ωN1 +
e−2r

√
ωN1

(2π)3r2(1 − √
ωN1)

= 0

one can repeat the trick, setting for example vn = u′
n + v′

nvN1 for n �= N1, and prove that in
fact {un} and {vn} are still analytic in a neighbourhood of p = 0. Thus it is sufficient to prove
that q0, which is solution of

4πα0 + c0(p) + 4π
∑
k∈Z

k �=0

αkvk


 q0(p) = −4π

∑
k∈Z

k �=0

αkuk + f
(2)
0 (p)

has the required behaviour near p = 0. First, setting v0
n = vn(p = 0), we have to prove that∑

k∈Z

k �=0

αkv
0
k �= −α0 − 1

4π(2π)3r2

but, assuming that the contrary is true and multiplying both sides of equation (5.2), with
n0 = 0, by v0∗

n and summing over n ∈ Z, n �= 0, one has∑
k∈Z

k �=0

√
ωn

∣∣v0
n

∣∣2 = −4π
∑
n,k∈Z

n,k �=0

v0∗
n αk−nv

0
k + 4πα0 +

1

(2π)3r2

The right-hand side is still real so that, assuming that the genericity condition is satisfied by
{αn} and applying the argument contained in the proof of proposition 4.1, we immediately
obtain

{
v0

n

} = 0, which is a contradiction, since
{
v0

n

}
solves (5.2). The result for q̃(2) follows

then directly from the equation for q0, since e−2r
√−ip has a branch cut along the negative real

line. The extension to q(1) is thus trivial.

(2) Resonant case. As before let us look for a solution of (4.1) of the form qn = un + vnq0 ,
n �= 0, so that {un}, {vn} ∈ �2(Z\{0}) solve (5.1) and (5.2) with ω = 1/N . Multiplying both
sides of (5.1) and (5.2) for n = N by 1 − n/N − ip, one sees that uN and vN have no pole
singularity at p = 0. On the other hand, if there exists N1 ∈ Z such that

4πα0 +

√
N1

N
+

e−2r
√

N1/N

(2π)3r2(1 − √
N1/N)

= 0
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the solutions could have a pole at p = 0, for n = N1 (the expression above guarantees that
N1 �= N ). Nevertheless, repeating the above procedure for n = N1, it is easily seen that in
fact {un}, {vn} ∈ �2(Z\{0}) are both analytic in a neighbourhood of p = 0. The behaviour of
q(2) near p = 0 is then proved as in the non-resonant case, but we have now to take account
of q(1), since the coefficient in M1 for n = N (see the definition (2.18)) has a pole at p = 0.
But from (4.1) one has

e−2r
√

n/N−ip

(2π)3r2
q(2)

n (0) = − 2i
√

2π

r(1 +
√

n/N)

[
(2π)

3
2 − 1

(2π)
3
2

e−r
√

n/N − e−r

]

so that q
(1)
N (0) = i

√
2π .

�

6. Complete ionization in the generic case

Summing up the results about the behaviour of the Laplace transforms q̃(j)(p), j = 1, 2, we
can state the following:

Theorem 6.1. If {αn} satisfies (2.9) and the genericity condition (2.11) with respect to T , as
t → ∞,

|q(j)(t)| � Aj t
− 3

2 + Rj(t) (6.1)

where Aj > 0 and Rj(t) has an exponential decay, Rj(t) ∼ Cj e−Bj t for some Bj > 0.
Moreover the system shows asymptotic complete ionization and, as t → ∞,

|θ(t)| = |(ϕα(0), �t )| � Dt−
3
2 + E(t)

where D > 0 and E(t) has an exponential decay.

Proof. Propositions 3.3, 4.1 and 5.1 guarantee that q̃(p) is analytic on the closed right half
plane, except branch point singularities on the imaginary axis at p = iωn, n ∈ Z. Therefore
we can choose an integration path for the inverse of Laplace transform of q̃(q) along the
imaginary axis like in [4] and the result is a straightforward consequence of the behaviour of
q(j)(p) around the branch points given by proposition 5.1 (see, e.g., the proof of theorem 3.1
in [3]).

The Laplace transform of θ(t) can be expressed in the following way (see, e.g.,
proposition 2.1 in [3]):

θ̃ (p) = Z̃(p) + Z̃1(p)q̃(1)(p) + Z̃2(p)q̃(2)(p)

where Z̃(p) is analytic on the closed right half plane and Z̃j (p) has only a branch point at
the origin of the form aj + bj

√
p. Hence θ̃ (p) has the same singularities as q̃(p) and then its

asymptotic behaviour coincides with that of q(t). �

In the following we shall prove a stronger result about complete ionization of the system,
namely that every state � ∈ L2(R3) is a scattering state for the operator H(t), i.e. for any
0 < R < ∞

lim
t→∞

1

t

∫ t

0
dτ‖F(|x| � R)U(τ, 0)�‖2 = 0 (6.2)

where F(S) is the multiplication operator by the characteristic function of the set S ⊂ R
3 and

U(t, s) the unitary two-parameters family associated with H(t) (see (2.5)).
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In order to prove (6.2), we first need to study the evolution of a generic initial datum in
a suitable dense subset of L2(R3) and then we shall extend the result to every state using the
unitarity of the evolution defined by (2.5) (see, e.g., [9]).

Proposition 6.1. Let � ∈ C∞
0 (R3\{0, r}) a smooth function with compact support away from

0, r and q(j)(t) be the solutions of equations (2.7) and (2.8) with initial condition �0 = �. If
{αn} satisfies (2.9) and the genericity condition (2.11) with respect to T , as t → ∞,

|q(j)(t)| � Aj t
− 3

2 + Rj(t) (6.3)

where Aj > 0 and Rj(t) has an exponential decay, Rj(t) ∼ Cj e−Bj t for some Bj > 0.

Proof. The estimate on the behaviour for large time contained in section 2 still applies, so
that q̃(j)(p) is analytic ∀p with Re(p) > b0.

Hence we can consider the Laplace transforms of equations (2.7) and (2.8), which have
the form (2.16) and (2.17) with

G1(p) =
√

2

π

∫ ∞

0
dt e−pt

∫
R

3
d3k�̂(k) e−ik2t

G2(p) =
√

2

π

∫ ∞

0
dt e−pt

∫
R

3
d3k�̂(k) e−i(k2−k · r)t

where �̂(k) is the Fourier transform of �.
Since for every smooth function � with compact support, �̂(k) is a smooth function

with an exponential decay as k → ∞, so that Gj(p) has the same singularities as in the case
already studied, i.e. a branch point at the origin of the form a(p) + b(p)

√
p. �

Theorem 6.2. If {αn} satisfies (2.9) and the genericity condition (2.11) with respect to T ,
every � ∈ L2(R3) is a scattering state of H(t), i.e. it satisfies (6.2). Moreover the point
spectrum of the Floquet operator associated with H(t),

K ≡ −i
∂

∂t
+ H(t)

is empty.

Proof. The proof follows from unitarity of the evolution and the explicit expression (2.6),
together with proposition 6.1 (see the proof of theorem 3.2 in [3]). The absence of eigenvalues
of the Floquet operator is a straightforward consequence: every eigenvector of K is of the
form eiβtχ(x, t), where β ∈ R and χ is periodic in time, hence it cannot satisfy (6.2). �
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